澳门皇冠金沙网站▎在线官网
做最好的网站

数据抓取分析(python + mongodb),pythonmongodb

2019-10-03 作者:网络服务   |   浏览(68)

分享点干货!!!

数据抓取分析(python + mongodb),pythonmongodb

分享点干货!!!

Python数据抓取分析

编程模块:requests,lxml,pymongo,time,BeautifulSoup

首先获取所有产品的分类网址:

 1 def step():
 2     try:
 3         headers = {
 4            。。。。。
 5             }
 6         r = requests.get(url,headers,timeout=30)
 7         html = r.content
 8         soup = BeautifulSoup(html,"lxml")
 9         url = soup.find_all(正则表达式)
10         for i in url:
11             url2 =  i.find_all('a')
12             for j in url2:
13                  step1url =url + j['href']
14                  print step1url
15                  step2(step1url)
16     except Exception,e:
17         print e

 

我们在产品分类的同时需要确定我们所访问的地址是产品还是又一个分类的产品地址(所以需要判断我们访问的地址是否含有if判断标志):

 1 def step2(step1url):
 2     try:
 3         headers = {
 4            。。。。
 5             }
 6         r = requests.get(step1url,headers,timeout=30)
 7         html = r.content
 8         soup = BeautifulSoup(html,"lxml")
 9         a = soup.find('div',id='divTbl')
10         if a:
11             url = soup.find_all('td',class_='S-ITabs')
12             for i in url:
13                 classifyurl =  i.find_all('a')
14                 for j in classifyurl:
15                      step2url = url + j['href']
16                      #print step2url
17                      step3(step2url)
18         else:
19             postdata(step1url)

当我们if判断后为真则将第二页的分类网址获取到(第一个步骤),否则执行postdata函数,将网页产品地址抓取!

 1 def producturl(url):
 2     try:
 3         p1url = doc.xpath(正则表达式)
 4         for i in xrange(1,len(p1url) + 1):
 5             p2url = doc.xpath(正则表达式)
 6             if len(p2url) > 0:
 7                 producturl = url + p2url[0].get('href')
 8                 count = db[table].find({'url':producturl}).count()
 9                 if count <= 0:
10                         sn = getNewsn()
11                         db[table].insert({"sn":sn,"url":producturl})
12                         print str(sn) + 'inserted successfully'
13                 else:
14                         'url exist'
15 
16     except Exception,e:
17         print e

其中为我们所获取到的产品地址并存入mongodb中,sn作为地址的新id。

下面我们需要在mongodb中通过新id索引来获取我们的网址并进行访问,对产品进行数据分析并抓取,将数据更新进数据库内!

其中用到最多的BeautifulSoup这个模块,但是对于存在于js的价值数据使用BeautifulSoup就用起来很吃力,所以对于js中的数据我推荐使用xpath,但是解析网页就需要用到HTML.document_fromstring(url)方法来解析网页。

对于xpath抓取价值数据的同时一定要细心!如果想了解xpath就在下面留言,我会尽快回答!

 1 def parser(sn,url):
 2     try:
 3         headers = {
 4             。。。。。。
 5             }
 6         r = requests.get(url, headers=headers,timeout=30)
 7         html = r.content
 8         soup = BeautifulSoup(html,"lxml")
 9         dt = {}
10         #partno
11         a = soup.find("meta",itemprop="mpn")
12         if a:
13             dt['partno'] = a['content']
14         #manufacturer
15         b = soup.find("meta",itemprop="manufacturer")
16         if b:
17             dt['manufacturer'] = b['content']
18         #description
19         c = soup.find("span",itemprop="description")
20         if c:
21             dt['description'] = c.get_text().strip()
22         #price
23         price = soup.find("table",class_="table table-condensed occalc_pa_table")
24         if price:
25             cost = {}
26             for i in price.find_all('tr'):
27                 if len(i) > 1:
28                     td = i.find_all('td')
29                     key=td[0].get_text().strip().replace(',','')
30                     val=td[1].get_text().replace(u'u20ac','').strip()
31                     if key and val:
32                         cost[key] = val
33             if cost:
34                 dt['cost'] = cost
35                 dt['currency'] = 'EUR'
36         
37         #quantity
38         d = soup.find("input",id="ItemQuantity")
39         if d:
40            dt['quantity'] = d['value']
41         #specs
42         e = soup.find("div",class_="row parameter-container")
43         if e:
44             key1 = []
45             val1= []
46             for k in e.find_all('dt'):
47                 key =  k.get_text().strip().strip('.')
48                 if key:
49                     key1.append(key)
50             for i in e.find_all('dd'):
51                 val =  i.get_text().strip()
52                 if val:
53                     val1.append(val)
54             specs = dict(zip(key1,val1))
55         if specs:
56             dt['specs'] = specs
57             print dt
58 
59             
60         if dt:
61             db[table].update({'sn':sn},{'$set':dt})
62             print str(sn) +  ' insert successfully'
63             time.sleep(3)
64         else:
65             error(str(sn) + 't' + url)
66     except Exception,e:
67         error(str(sn) + 't' + url)
68         print "Don't data!"

最后全部程序运行,将价值数据分析处理并存入数据库中!

 

http://www.bkjia.com/Pythonjc/1230281.htmlwww.bkjia.comtruehttp://www.bkjia.com/Pythonjc/1230281.htmlTechArticle数据抓取分析(python + mongodb),pythonmongodb 分享点干货!!! Python数据抓取分析 编程模块:requests,lxml,pymongo,time,BeautifulSoup 首先获取所...

Python数据抓取分析

编程模块:requests,lxml,pymongo,time,BeautifulSoup

首先获取所有产品的分类网址:

def step():
  try:
    headers = {
      。。。。。
      }
    r = requests.get(url,headers,timeout=30)
    html = r.content
    soup = BeautifulSoup(html,"lxml")
    url = soup.find_all(正则表达式)
    for i in url:
      url2 = i.find_all('a')
      for j in url2:
         step1url =url + j['href']
         print step1url
         step2(step1url)
  except Exception,e:
    print e

我们在产品分类的同时需要确定我们所访问的地址是产品还是又一个分类的产品地址(所以需要判断我们访问的地址是否含有if判断标志):

def step2(step1url):
  try:
    headers = {
      。。。。
      }
    r = requests.get(step1url,headers,timeout=30)
    html = r.content
    soup = BeautifulSoup(html,"lxml")
    a = soup.find('div',id='divTbl')
    if a:
      url = soup.find_all('td',class_='S-ITabs')
      for i in url:
        classifyurl = i.find_all('a')
        for j in classifyurl:
           step2url = url + j['href']
           #print step2url
           step3(step2url)
    else:
      postdata(step1url)

当我们if判断后为真则将第二页的分类网址获取到(第一个步骤),否则执行postdata函数,将网页产品地址抓取!

本文由澳门皇冠金沙网站发布于网络服务,转载请注明出处:数据抓取分析(python + mongodb),pythonmongodb

关键词:

  • 上一篇:没有了
  • 下一篇:没有了